
An Open Source Culture 
in the Undergraduate 

Computer Science 
Curriculum

John David N. Dionisio, PhD
Assistant Professor, Computer Science

Loyola Marymount University

1



Partial support for this work was provided by 
the National Science Foundation’s Course, 
Curriculum, and Laboratory Improvement 

Program, Award No. 0511732

2



Outline

Background and Motivation

Characteristics of an “Open Source Culture”

Teaching Techniques

Hardware & Software Infrastructure

Early Returns

3



Impedance Mismatch!

Disconnect between undergraduate computer 
science training and expectations/skill sets 
required in industry

4



Undergraduate 
Training

Industry 
Expectation

Work alone Work in a team

“Toy” programs and 
algorithms

Large, modular 
project

Throwaway code Code longevity (for 
better or worse)

5



Historically Open

Software as scholarly work, freely shared 
and published — a “golden age”

Software became intellectual property, 
product of commerce, or trade secret

6



Returning to our Roots

Increased software complexity, 
decreased software quality

New development approaches and practices; 
better development tools, programming 
languages, programming environments

Open source culture

7



State of the Industry

Commercial software remains (and probably 
won’t go away — not a bad thing in and of 
itself IMHO)

Open source software gaining broader 
exposure and acceptance (including new 
business models that embrace it)

Continuing improvement in software 
engineering methods, techniques, tools

8



So how can we take this 
to school?

9



Official Open Source 
Definition (version 1.9)

Free redistribution No discrimination against 
fields of endeavor

Source code Distribution of license

Derived works License must not be specific 
to a product

Integrity of the author’s 
source code

License must not restrict 
other software

No discrimination against 
persons or groups

License must be technology-
neutral

10



“Open Source Teaching 
Framework”

Adaptation, not adoption

Shift in goals: learning computer science, not 
software development

Curriculum-wide scope vs. individual courses

11



Curriculum Progression

Examine sample code, test 
existing code, fix bugs

Term-length, focused projects

Capstone projects 
(team, individual)

Concise functionality 
with unit tests

12



General Principles: 
Source Code

All code — by faculty or students — resides 
in a centralized, public repository

As much as possible, everyone’s code is 
visible to everyone else — sometimes in the 
classroom, for code review or team fixing

No code is thrown away — it remains 
available to future “generations”

13



General Principles: 
Quality & Community

Documentation, inline and online

Automated tests

Constructive code review — give & take

Form collaborative communities among 
faculty, students, classes, and projects

14



General Principles:
Rights & Responsibilities

Credit where credit is due

Appropriate access and authorization

Acknowledge, understand, and respect 
privacy, confidentiality, and license

15



Sample Code Bazaar

Faculty members maintain live, organized, 
searchable, student-accessible sample code 
libraries for their courses

Students access the sample code using the 
same tools and processes that they would 
encounter outside — no handouts!

“Derived works:” exercises involve extending 
existing code

16



The Cyclic Life of Code

Student programming projects live beyond 
the original term and course

Focus on existing code and not new, 
throwaway fragments

Add/improve unit tests

Find/fix bugs

Improve/refactor designs

17



Test Infection

1. Instructor specifies required functionality

2. Students submit unit tests

3. Instructor runs tests against a library of 
implementations — some good, some bad

4. Students submit code

5. Students’ unit tests are run against each 
other’s code

18



Release Early, Release 
Often, Release Open
For courses with term-long individual 
programming projects

Project milestones throughout the term

In-class code review

Code sharing for common functions

Projects feed back to lower division work

19



“CourseForge”

A hardware + software infrastructure for 
supporting the teaching framework

Certain teaching elements are impractical 
without some degree of automation

Derived from open source software, delivered 
as open source software — the system will 
use itself

20



Department-Wide 
Source Code Repository

Multifaceted organization: faculty, students, 
courses, projects, homework, research

Tags, versions, and branches

Release mechanism for “official” submissions

Read-only views over the Web

21



Automated Testing & 
Reporting

Scripted actions upon source code 
submission: configurable per instructor, per 
project, per course, or per assignment

Web and e-mail feedback

Summary/reports for instructors, team 
leaders, individual students

22



Compile Farm

Build, test, and run against multiple 
architectures and operating systems

Isolate specific build fixtures for particular 
software requirements: computer graphics, 
database management systems

Comprehensive build reports

23



Wiki

Parallels structure of source code repository, 
with appropriate authorizations

Integrated links to other Web-accessible 
information: source code repository, test and 
build reports, blogs/forums/community

24



Blogs, Forums, 
Community

Several tiers, ranging from individuals to 
groups and projects

Searchable archives, e-mail access

25



Initial Experiment

Actual exercise in a programming languages 
course this semester

Done “manually” — no CourseForge yet

Work in progress!

More to come

26



Assignment

Use JavaCC to implement a parser for a 
simple language

Provide a test suite for the parser: accept 
strings that belong to the language, reject 
strings that don’t

Differentiate between lexical and syntactic 
errors in “bad” strings

27



Initial “Test Shakedown”

Against instructor’s “control” implementation

Should eventually include more than one 
implementation, both correct and incorrect

Four total test errors caught

0 1 2 3 4 5 6
ab acd b

28



0 1 2 3 4 5 6
0
1 a

2 bbc bd b bbbc bb bbe b

3
4
5 c ac c

6 f f

Tests
Pa

rs
er

s

29



Findings

Precision is key — need to ensure consistent 
understanding of what is required

Parallels requirements analysis

Tests must cover both commission and 
omission errors

Tests must be very fine-grained — otherwise 
failed test may mask additional failures

30



Student Responses

Overall more enjoyable than a conventional 
programming assignment

Increased motivation to get it right

Satisfaction with working as a team to get 
everyone’s code to “go green”

31



Under Consideration

Grading and assessment

Working code
Comprehensive tests
Team participation

License for student projects — particularly 
after they have graduated

Replicability in other institutions

32



Conclusion

Adaptation of an open source culture at the 
curriculum level may improve undergraduate 
computer science education

Better computer scientists

Better match with industry expectations

Increased individual satisfaction, sense of 
accomplishment, and real-world impact

33


