MICHAEL SCHROTER

The Business of Software | phiiip 6. Armour

Project Portfolios: Organizational
Management of Risk

Assessing companies’ differing attitudes toward identifying and
calculating risk-taking endeavors.

e truthful now, how did
Byour 401(k) plan look at
the end of the dot-com

bust? All those tech stocks and
their 25%+ annual gains kind of
hit the brakes, didn’t they? I
own my part of the “irra-
tional exuberance” that Fed-
eral Reserve Chairman Alan
Greenspan accused us all of.
And I suspect, like me, you
paid a hefty price for your
unbridled optimism. Don’t
get me wrong, I think opti-
mism is good. But it must
be realistic if you don’t want
to pay a high price.

Some companies involved
in the business of software
have a very curious attitude
toward risk. On one hand,
they may assert that they are
risk tolerant, even bragging
about it as if it was some
measure of development vitality.
Such companies may routinely
embrace highly risky project sce-
narios. In these situations, I have
heard cautionary voices dis-
counted as nay-sayers, or even
accused of not being team play-
ers. On the other hand, I have
seen companies that willfully and
enthusiastically embark on high-

risk projects exhibit astonish-
ment or even anger when such
projects “fail’—casting about for
some hapless scapegoat to take the
blame for the decision and its fail-

ure. It is as if the concepts of risk
and failure are somehow discon-
nected. This is a strange situation
and it reminds me of some peo-
ples” attitudes toward financial
investments—if we merely think
it will be so, it will be so. Well
sometimes it might, but usually it
wont.

COMMUNICATIONS OF THE ACM

All Projects Are Risky

Every software project involves

some degree of risk. The reason

is that, at the time we start a

project, there are always key vari-
ables of the project that are
simply not known. In fact,
I contend the primary task
of most software projects is
to discover and resolve
these unknowns rather than
to build a system. Or per-
haps more pointedly, the
task of resolving the
unknowns constitutes the
bulk of the work and risk
on the project. Manage-
ment, whose primary func-
tion is to exert control,
usually requests and
requires that decisions are
always guaranteed to be
correct and that no sur-
prises occur.

While we can and should do a
lot more to avoid being surprised
(sometimes over and over again)
by the same problems we have
experienced in the past, we can-
not remove all variance between
this project and previous projects.
The primary purpose of any
development is to do something
we have not done before. If we

March 2005/ Vol. 48, No. 3 17

The Business of Software

When the payback at a given level of resource allocation exceeds the
cost at a certain level of risk, it is a good plan for that project.

were able to remove all sources of
variance, we would also remove
the primary purpose of the proj-
ect. Naturally, the number and
type of these unresolved variables
determines the level of risk. Proj-
ects that have most of their vari-
ables defined up front have little if
any risk. Of course, the only way
a project could have a// variables
predetermined would be if we had
already built this exact system, in
which case the compelling ques-
tion would be: why are we build-
ing it again?

Give Me Your Best Estimate
“Give me your best estimate” is a
common if poorly defined
request made of estimators. It
usually means “...something very
soon.” When presented with
such a demand, I have occasion-
ally replied with something like:
“you can have the software next
week, as long as you are willing
to tolerate a 0.000001% chance
of it working properly.” While
this is a semantically and statisti-
cally correct statement, I caution
readers to use it with care. Deliv-
ered to an unsympathetic,
stressed, or humorless boss, it
might have career-modifying
properties. That said, it has
sometimes initiated a dialogue
along the following lines:

* The person requesting the esti-
mate has some nominal,
though unstated, expectation of
probability of success.

* That probability is not
0.000001%.

* The person would like it to be
100% guaranteed but (intellec-
tually, if not emotionally)
understands that, since the
project is neither death nor
taxes, it is probably not going
to be quite so certain.

* Ergo, the expected probability
lies somewhere between one
chance in 100,000 and 99,999
chances in 100,000.

Getting someone to intention-
ally fix on, articulate, and com-
mit to a specific success
probability within this range can
be a challenge. But why? Intellec-
tually the case is clear. We know
that too low a probability is, well,
too low. And we know that, real-
istically, we usually cannot pay
for, or wait for, a 100% guaran-
tee even if it could be achieved.
So why the difficulty in deciding
just where to draw the line?

Some You Win...

The reason for the difficulty is
quite straightforward. Suppose we
decide that 85% is a good proba-
bility of success for a given project.
We then have to ask ourselves this

18 March 2005/Vol. 48, No. 3 COMMUNICATIONS OF THE ACM

question: If we agree to and sign off
on a probability of success of 85%,
what else are we agreeing ro? If we
accept that we require better than
six chances in seven that we will
provide to our customer the con-
tracted functionality within the
constraints of time, staff, and bud-
get we have established, we must
also accept that we can tolerate a
one chance in seven of failure to
provide this functionality under
the same terms. This apparent
open acceptance of the prospect of
“failure” appears to be anathema
to many organizations and many
executives. The problem is that we
want certainty of success. We are
just not willing to pay for it.

In reality, there is a universe of
possible project scenarios in which
we allocate different levels of staff,
budget different levels of cost,
expect different schedules for
delivery with different degrees of
delivered functionality and embed-
ded defects. For each of these sce-
narios, there is a finite probability
of meeting a given set of develop-
ment goals with a given set of
development assets and resources.
We can always adjust this proba-
bility. There is no trick to being
uniformly successful in managing
projects—simply allocate more
resources, better people, and take
longer.

Handicapping Horses

There is no trick to figuring out
which horse is most likely to win
a race at the racetrack: it is the
favorite. It is always the favorite.
Not that the favorite always wins,
but it does so more often than
other horses—which is, of
course, why it is the favorite. But
good handicappers do not just
pick favorites. The essence of

payback at a given level of
resource allocation exceeds the
cost at a certain level of risk, it is
a good plan for that project.

No-Risk Projects

The problem with project plan-
ning in many organizations is
they do not do an explicit risk
calculation. Specifically, we do
not set up structures that calcu-

ACCOUNTING

Business
Decisions

Qualified
Outputs

f

Consistent
Roll-up

uonyedyIend
ssado4d Sununoddoy

Accounting Info

Financial Data I

We can use high-level
accounting documents
(Balance Sheet, P&L) to

make critical business
decisions—ONLY IF we can
trust the process that creates
and maintains them.

ESTIMATION

Business
Decisions

Qualified
Outputs

f

Consistent
Roll-up

uonyesyIend
$S920.4d uoeWISy

Estimation Info
Project Data I

We can use high-level
estimation outputs to
make critical business
decisions—ONLY IF we
can trust the process
that creates them.

Equivalence of accounting and
estimation.

handicapping is not predicting
the winner—it is maximizing
return on investment. Good
handicappers calculate and opti-
mize the difference between the
paid odds and what they perceive
to be the actual odds of success.
When the likely payout exceeds
the perceived risk by a certain
value, it is a good bet.

So it is for projects: when the

late and summarize risk in mone-
tary terms so that decision
makers can make intelligent deci-
sions based on that risk. An anal-
ogy with accounting systems is
appropriate (see the figure here).
Companies are able to trust that
their balance sheets can be used
to make business decisions only
to the extent their balance sheets
are created by a valid, certified,
and audited process. We run our
project estimates and build our
project plans, but we often don’t

COMMUNICATIONS OF THE ACM

know what level of risk we are
taking when we commit to these
plans. We don’t know because
the organization does not explic-
itly calculate and roll up the risk
for all projects. We don’t know
because we don’t ask what level
of risk we are willing to pay for,
and often we are not willing to
accept the negative side of the
risk as a conscious and inten-
tional decision.

Sometimes risk is expressed in
lists of “open issues” or in broad
categorizations such as “high
risk” and “low risk.” Sometimes
people are asked what level of
confidence they have in their
estimates. There is nothing
wrong with these measures, but
they are not easy to use to make
critical decisions. Rarely is risk
expressed in terms of money and
what, say, the cost of an 85%
probability of success would be
versus an 80% probability.

Calculating Risk

Intrinsic risk is not easy to cal-
culate on many projects because
we are trying to measure what is
not known. The known aspects
and attributes of a new project
are not hard to quantify, but
that’s not what takes the time,
generates the work, and causes us
problems—it is what we don't
know that kills us. But the fact
that risk calculation is difficult
doesn’t mean we shouldn’t do it.
The value of an explicit risk cal-
culation in making more optimal
decisions is very high. I have
found a number of approaches

very helpful when used judi-

March 2005/ Vol. 48, No. 3 19

The Business of Software

ciously, including:

* Identifying likely sources of
Second Order Ignorance (what
we don’t know we don’t know)
[1] since this is the most
intractable form of lack of
knowledge to resolve. As a rule
of thumb, anything with the
adjective “new” in front of it is a
pretty good place to start.

* Identifying likely variance
ranges of typical unknowns.
These include things like “three
point sizing” (minimum, most
likely, maximum) values for sys-
tem size and scope metrics or the
simpler min-max scoping. This
can also be done by sampling the
variance from a range of experts’
opinions. I have found the Rand
Corporation’s Delphi approach
to be very helpful in doing this.
* Causal analysis of historical
estimate variance to identify
where and why estimates were
off and then extrapolating them
to this situation.

* Statistically valid combination
of risk factors. This is a topic
that has occupied the attention
of insurance companies for a
very long time and is a science
unto itself. Stochastic methods
such as Monte Carlo can be
helpful here.

* Applying standardized and
defensible calibrations and proce-
dures to convert input scope and
asset factors into the appropriate
resource prediction outputs nec-
essary to make a good business
decision.

* Factoring the variables into
business scenarios, each incorpo-

rating risk assessments in the key
limiting business areas.

* Establishing organizational
structures and processes to roll
up risk to the business-unit deci-
sion level.

* Refactoring risk into valid
numerical business information
[2]. The most effective metrics
are usually ones beginning with a
“$” sign. I have found this to be
essential in getting risk manage-
ment to actually function the
way it needs to. Qualitative risk
factors and lists of open points
and issues are all well and good,
but you can’t beat a good mone-
tary difference in cost or profit to
focus peoples’ attention and get
them to make a decision.

Portfolios and Risk

In many respects, a collection of
projects is like an investment
portfolio for a company [3].
Each project is allocated and
consumes assets. From each proj-
ect we expect a reasonable return
on our investment. But in the
business of software, companies
often do not know what level of
risk they are taking when they
sign off on a project plan because
they have not set up the neces-
sary processes to calculate and
inform on the risk. And anyway,
they haven’t asked for it and
sometimes won't accept it even if
it were given. Most companies [
deal with put intense pressure on
the delivery schedule of a// their
projects, which has the effect of
significantly increasing the level
of risk (and cost and defects)
across the board. This often

20 March 2005/Vol. 48, No. 3 COMMUNICATIONS OF THE ACM

comes without an equivalent
increase in the level of return. In
doing so, these companies may
be inadvertently setting up a
whole portfolio of high-tech junk
bonds. As a business, we need to
change this behavior, because it
is not a good business practice. It
is OK to invest in high-
risk—high-return investments. It
is not OK to invest in something
that is high risk without the high
return. It is also not OK to invest
in something that is high risk
and not know it is high risk, or
to pretend or act like it is not
high risk. The reason is that
high-risk projects fail. Often.
That's why they’re considered
high-risk projects.

And if your retirement
income, your children’s college
fund, your career, or your
company’s future is linked to this
investment, then prudence, dis-
cretion, and now Sarbanes-Oxley,
dictate we know what level of risk
we are taking, it is a reasonable one
with respect to the likely return,
and we don't take a big risk in
every investment we make. @

REFERENCES

1. Armour, P.G. The Laws of the Software Process.
Auerbach Publishers, 2003, 9.

2. Ferguson, R.W. A project risk metric.
Crosstalk (Apr. 2004), 12-15.

3. Henig, P.D. The efficient frontier. C/O
Insight (June 2004), 28.

PHILLIP G. ARMOUR (armour@corvus-
intl.com) is a senior consultant at Corvus
International Inc., Deer Park, IL and a
research director in the Center for Software
Development Innovation at Number Six

Software, Arlington, VA.

© 2005 ACM 0001-0782/05/0300 $5.00

