@ Open Forum

Why Big Software Projects Fail:
The 12 Key Questions

Watts S. Humphrey
The Software Engineering Institute

In spite of the improvements in software project management over the last several years, software projects still fail distressingly

often, and the largest projects fail most often. This article explores the reasons for these failures and reviews the questions to
consider in improving your organigation’s performance with large-scale software projects. INot surprisingly, considering these

same questions will help you improve almost any large or small project with substantial software content. The principal ques-
tions concern why large software projects are hard to manage, the kinds of management systems needed, and the actions

required to implement such systems. In closing, the anthor cites the exiperiences of projects that have used the methods described
and cites sources for further information on introducing the required practices.

Software project failures are common,
and the biggest projects fail most often.
There are always many excuses for these
failures, but there are a few common symp-
toms. Some years ago, before the invention
of the Capability Maturity Model® (CMM®)
and CMM Integration™ (CMMI®) the prin-
cipal problem was the lack of plans [1, 2].
In the eatly years, I never saw a failed proj-
ect that had a plan, and very few unplanned
projects were successful.

The methods defined for CMM and
CMMI Levels 2 and 3 helped to address
this problem. As the Standish data in
Figure 1 shows, the success rate for soft-
wate organizations improved between 1994
and 2000, and much of this improvement
was due to more widespread use of sound
project management practices [3]. Still,
with less than 30 percent of our projects
successful, those of us who are software
professionals have little to be proud of.

The definition of a successful project
is one that completed within 10 percent or
so of its committed cost and schedule and
delivered all of its intended functions.
Challenged projects are ones that were
seriously late or over costs or had reduced
functions. Failed projects never delivered
anything, Figure 2 (see page 26) shows
another cut of the Standish data by project
size. When looked at this way, half of the
smallest projects succeeded, while none of
the largest projects did. Since large proj-
ects still do not succeed even with all of
the project management improvements of
the last several years, one begins to wonder
if large-scale software projects are inher-
ently unmanageable.

Question |:Are All Large
Software Projects

Unmanageable?
There are some large, unprecedented proj-
ects that are so risky that they would like-

March 2005

ly be challenged under almost any man-
agement system. But some large projects
have succeeded. Two examples are the
Command Center Processing and Display
System Replacement (CCPDS-R) project,
described by Walker Royce, and the oper-
ating system (OS)/360 project in my for-
mer group at IBM [4, 5]. The CCPDS-R
was a US. Air Force installation at
Cheyenne Mountain in Colorado. It had
about 100 developers at its peak. The
OS/360 was the operating system to sup-
port the IBM 3060 line of computers, and
included the control program, data man-
agement, languages, and support utilities.
Its development team consisted of about
3,000 software professionals.

Both of these projects placed heavy
emphasis on planning, and both adopted
an evolutionary development strategy with
multiple releases and phased specifica-
tions. Both projects also took a somewhat
unconventional approach to motivating
team member performance. For CCPDS-
R, management distributed 50 percent of
the project award fee to the development
team members. This built their loyalty and
commitment to success, and maintained
team motivation throughout the job. The
CCPDS-R project was delivered on sched-
ule and within contracted costs.

By the time I took over the OS/360
project some years ago, we had all learned
that the proper strategy for building big
software-intensive systems was to break
the job into as many small incremental
releases as practical. Since this strategy
required organization-wide coordination,
our very first action was to have all the
development teams in all the involved lab-
oratories produce their own plans and
coordinate them through a central build-
and-release group. Then, we based the
company’s commitments on the dates that
the teams provided. In no case did IBM

commit to any date that was not support-
ed by a plan that had been developed by
the team that was to do the work.

These plans extended through 19
releases over a period of 30 months. Most
importantly, they provided the focus we all
needed to coordinate the work of 15 lab-
oratories in six countries and to promptly
recognize and address the myriad prob-
lems that inevitably arose. The developers
were personally committed to their sched-
ules, and they delivered every one of these
releases on or ahead of the committed
schedules. So, at least based on this limit-
ed sample, some large software projects
can be managed successfully. However,
because the success rate is so low, large-
scale software projects remain a major
project management challenge.

Question 2: Why Are Large
Software Projects Hard to
Manage?

While large software projects are
undoubtedly hard to manage, the key
question is “Why?”

Historically, the first large-scale man-
agement systems wete developed to man-
age armies. They were highly autocratic,
with the leader giving orders and the

Figure 1: Project Success History [3]

Percent

= Succeeded
m Failed
0 Challenged

wwwistschillaf.mil 25

Open Forum

10.0 + (§
8 m
S 60-100/L P
S]
o
= 3.0-6.0
Lo
Q 1 —=
5 15-30|l y
5] | |
£ 0.75-15 | | | J
E i
<0.75 || |
0 10 20 30 40 50 60

Percent Success - %

Figure 2: Success Rate by Project Size [3]

troops following. Over time, work groups
were formed for major construction proj-
ects such as temples, palaces, fortifications,
and roads. The laborers were mostly slaves,
and again, the management system was
highly autocratic. The workers did what
they were told or they were punished.
This army-like structure was essentially
the only management system for many
years until the Greek city-states introduced
democratic political systems. However,
these democratic principles were primarily
used for governing, not for project man-

The first large-scale management systems were devel-
oped for armies. Leaders gave orders and troops fol-
lowed. With training and discipline, this approach

conld work even amid chaos and confusion.

Large-scale management systems were eventually
applied to major construction projects. The system
was highly antocratic; workers did what they were
told or they were punished.

agement. Somewhat later, a totally differ-
ent management system was used to build
cathedrals. This work was largely done by
volunteer artisans who managed them-
selves under the guidance of a master
builder. Since building a cathedral often
took 50 yeats or more, the cathedral-man-
agement system is not a good model for
modern large-scale software projects.
However, it did produce some beautiful
results. This cathedral-building manage-
ment system was not used for anything but
cathedrals for many years, but it has
recently had some success as the guiding
principle for the open source software
development community [6].

The next major management innova-
tion was the factory. Factories started pro-
ducing clothing and were soon used for
making all kinds of goods. Again, howev-
er, the factory management system was
autocratic, with management directing
and workers doing. While the factory
model improved productivity, it was not
without its problems. The early work of
Frederick Winslow Taylor about 100 years
ago and the more recent work of WE.
Deming, J.M. Juran, and others has
improved the effectiveness of this model
by redefining the role of the worker. The
modern view is that to do quality work for
predictable costs and schedules, workers
must be treated as thinking and feeling
participants rather than merely as unfeel-
ing drudges. However, to date, these
methods have had limited application to
software [7, 8, 9].

The factory/army system has persisted
and now characterizes the modern corpo-
rate structure where senior management
decides and everybody else follows. Many
managers would contend that they listen
to their people while making decisions.
However, employees generally view cor-
porate management as autocratic and few

26 CrossTALK The Journal of Defense Software Engineering

feel that they could influence a senior
manager’s decisions. Some managers even
argue that autocratic management is the
only efficient style for running large proj-
ects and organizations. Democratic
debates would take too long and decisions
would not be made by the most important
or knowledgeable people.

Regardless of the validity of this view,
the hierarchical management style does
not work well for managing large software
projects. Unfortunately, except for the
cathedral-building system, there is no
other proven way to manage large-scale
work. So, if we want to have successful
large-scale software projects, we must
develop a project management system that
is designed for this purpose.

Question 3: Why Is Autocratic
Management Ineffective for
Software?

Before developing a new management sys-
tem, we should first understand why the
current one does not work. To answer this
question, we must explore the nature of
software work and how it differs from
other, more manageable work. Software
and software-like work have characteristics
that are particulatly difficult to manage.
From a management perspective, the prin-
cipal difference between managing tradi-
tional hardware projects and modern soft-
ware work concerns management visibility.

With manufacturing, armies, and tradi-
tional hardware development, the man-
agers can walk through the shop, battle-
field, or lab and see what everybody is
doing. If someone is doing something
wrong or otherwise being unproductive,
the manager can tell by watching for a few
minutes. However, with a team of soft-
ware developers, you cannot tell what they
are doing by merely watching. You must
ask them or carefully examine what they
have produced. It takes a pretty alert and
knowledgeable manager to tell what soft-
ware developers are doing. If you tell
them to do something else or to adopt a
new practice, you have no easy way to tell
if they are actually working the way you
told them to work.

Some might argue that hardware work
is not actually that different from software
work and that, at least for some hardware
tasks and most system engineering jobs,
the work is equally opaque to manage-
ment. This is certainly true, particularly
when the hardware engineers are produc-
ing microcode, using hardware design lan-
guages, or working with simulation or lay-
out tools. Today, as modern technical spe-
cialties increasingly overlap, many hard-

March 2005

ware projects now share the same charac-
teristics as large software projects. When
hardware development and system-engi-
neering work have the characteristics of
software work, they should be managed
like software. However, since these sys-
tems groups generally tend to be relatively
small, they do not yet present the same
project-manageability problems as large-
scale software.

Question 4:Why lIs
Management Visibility a

Problem for Software?

Since most software developers are dedi-
cated and hard-working professionals,
why is management visibility a problem?

The problem is that the manager can-
not tell where the project stands. To man-
age modern large-scale technical work,
you must know where the project stands,
how rapidly the work is being done, and
the quality of the products being pro-
duced. With eatlier hardwatre-develop-
ment projects, all of this information was
more-ot-less visible to the manager, while
with modern software and systems proj-
ects it often is not.

This is a problem because large devel-
opment projects, whether hardware or
software, always run into problems, and
every problem involves more work. While
developers can invariably overcome small
problems, every problem adds to the
workload and delays the job. Each little
slip is generally manageable by itself, but
over time, problems add up, and sooner or
later the project is in serious trouble.

The project managet’s job is to identi-
ty these small daily slips and to take steps
to counter them. As Fred Brooks said,
“Projects slip a day at a time” [10]. With
traditional hardware projects, the manager
could usually see these one- and two-day
slips and could do something about them.
With modern, complex, software-inten-
sive systems, the daily schedule slips are
largely invisible. So, with large-scale soft-
ware work, the managers generally do not
see the schedule problem until it is so big
that it is obvious. Then, howevet, it is usu-
ally too late to do much about it.

Question 5:Why Can’t
Managers Just Ask the

Developers?
If the managers cannot see where the
developers stand, why not just ask them?
Most developers would be glad to tell
their managers where they stood on the
job. The problem is that, with current
software practices, the developers do not
know where they stand any more than the

March 2005

managers do. The developers know what
they are doing, but they do not have pet-
sonal plans, they do not measure their
work, and they do not track their progress.
Without these practices to guide them,
software people do not know with any
precision where they are in the job. They
could tell the manager that they are pretty
close to schedule or 90 percent done with
coding, but the fact is that they do not
really know. Again, as Brooks said, “...pro-
grammers generally think that they are 90
percent through with the coding for more
than half of the project” [10].

Unless developers plan and track their
personal work, that work will be unpre-
dictable. Furthermore, if the cost and
schedule of the developers’ personal work
is unpredictable, the cost and schedule of
their teams’ work will also be unpre-
dictable. And, of course, when a project
team’s work is unpredictable, the entire
project is unpredictable. In short, as long
as individual developers do not plan and
track their personal work, their projects
will be uncontrollable and unmanageable.

Anyone who has managed software
development will likely argue that this is
an overstatement. Although you may not
know precisely where each developer’s
work stands, you can usually get a general
idea. Since about a third to a half of the
small projects are successful when the
developers do not plan and track their per-
sonal work, such projects can be managed.
So why should the lack of sound personal
software practices be a problem for large
projects?

It is true that software projects are not
totally unmanageable. As Figures 1 and 2
show, the worst problem is with the very
large software projects. On small projects,
some uncertainty about each team mem-
ber’s status is tolerable. However, as proj-
ects get bigger and communications lines
extend, precise status information
becomes more important. Without hard
data on project status, people communi-
cate opinions, and their opinions can be
biased or even wrong. When filtered
through just a few layers of management,
imprecise project status reports become
so garbled that they provide little or no
useful information. Then these large-scale
software projects end up being run with
essentially no management visibility into
their true status, issues, and problems.

Question 6:Why Do Planned
Projects Fail?

Today, with CMM and CMMI, most large
software projects are planned, and they
use methods like Program and Evaluation

Why Big Software Projects Fail: The 12 Key Questions

Work on cathedrals was done by volunteer artisans
who managed themselves under the guidance of a
master builder. This approach has bad some suc-
cess in open source software development.

and Review Technique (PERT) and
earned value to track progress. Why is that
not adequate?

The problem is with the imprecision
and inaccuracy of most software project
plans. Most projects have major mile-
stones such as specifications complete,
design complete, code complete, and the
like. The problem is that on real software
projects, few of these high-level tasks
have crisp completion dates. The require-
ments work generally continues through-
out design and even into implementation
and test; coding usually starts well before
design completion and continues through
most of testing;

A few years ago, the management of a
large software organization asked me to
review their largest project. They told me
that the code completion milestone had
already been met on schedule. However, 1
found that very little code had actually
been released to test. When I met with the
development teams, they did not know
how much code they had written or what
remained to be done. It took a full week to
get a preliminary count, and it was a
month before we got accurate data. It was
another 10 months before all of the cod-
ing was actually completed. It is not that
developers lie, just that without objective
data, they have no way to know precisely
where they stand. When they are under
heavy schedule pressure, people try to
respond. Since we all know that the beat-
er of bad news tends to be blamed, no
one dates to question the schedule and
everyone gives the most optimistic story
they can.

27

www.stsc.hill.af.mil

Open Forum

Question 7: Why Not Just

Insist on Detailed Plans?

Why cannot management just insist on
more detailed plans? Then they could have
more precise measures of project status.

While this would seem reasonable, the
issue is, “Whose plans are they?” Detailed
plans define precisely how the work is to
be done. When the managers make the
plans, we have the modern-day equivalent
of laborers building pyramids. The man-
agers tell the workers what to do and how
to do it, and the workers presumably do as
they are told.

While this has been the traditional
approach for managing labor, it has
become progressively less effective for
managing high-technology work, particu-
latly software. The principal reason is that
the managers do not know enough about
the work to make detailed plans. That is
why many of these software-intensive
projects typically have very generalized
plans. This provides the developers with
the flexibility they need to do creative
work in the way that they want to. The
current system is therefore the modern
equivalent of the cathedral-building sys-
tem where the developers act like artisans.
The unfortunate consequence is that,
without Herculean effort, it often seems
that the natural schedule for such projects
could easily approach 50 years.

Question 8: Why Not Tell
the Developers to Plan
Their Worlk?

The obvious next step would be to tell the
developers to make their own detailed
plans. Why would this not work?

There ate three problems. First, most
developers do not want to make plans;
they would rather write programs. They
view planning as a management responsi-
bility. Second, if you told them to make
plans, they would not know how to do it.
Few of them have the skill and experience
to make accurate or complete plans.
Finally, making accurate, complete, and
detailed plans means that the developers
must be empowered to define their own
processes, methods, and schedules. Few
managers today would be willing to cede
these responsibilities to the software
developers, at least not until they had evi-
dence that the developers could produce
acceptable results.

Question 9: How Can We Get
Developers to Make Good

Plans?
It seems that the problem of effectively

managing large software projects boils
down to two questions: How can we get
the software developers and their teams to
properly make and faithfully follow
detailed plans, and how can we convince
management to trust the developers to
plan, track, and manage their own work?

To get the developers to make and fol-
low sound personal plans, you must do
three things: provide them with the skills
to make accurate plans, convince them to
make these plans, and support and guide
them while they do it.

Providing the skills is just a question of
training. However, once the developers
have learned how to make accurate plans
and to measure and track their work
against these plans, they usually see the
benefits of planning and are motivated to
plan and track their own and their team’s
work. So, it is possible that developers can
be taught to plan and, once they learn
how, they are generally willing to make and

follow plans [11].

Question 10: How Can
Management Trust Developers

to Make Plans?

This is the biggest risk of all: Can you
trust developers to produce their own
plans and to strive for schedules that will
meet your objectives?

This question gets to the root of the
problem with autocratic management
methods: trust. If you trust and empower
your software and other high-technology
professionals to manage themselves, they
will do extraordinary work. However, it
cannot be blind trust. You must ensure
that they know how to manage their own
work, and you must monitor their work to
ensure that they do it propetly. The prop-
er monitoring attitude is not to be dis-
trustful, but instead, to show interest in
their work. If you do not trust your peo-
ple, you will not get their whole-hearted
effort and you will not capitalize on the
enormous creative potential of cohesive
and motivated teamwork. It takes a leap of
faith to trust your people, but the results
are worth the risk.

Question | 1:What Are the
Risks of Changing?

Every change involves some risk.
However, there is also a cost for doing
nothing. If you are happy with how your
large software projects are performing,
there is no need to change. However, few
managers or professionals are comfort-
able with the current state of software
practice, particularly for large-scale proj-
ects. So, there are risks to changing and

28 CrossTALK The Journal of Defense Software Engineering

risks to not changing. The management
challenge is to balance these risks before
deciding what to do.

There are two risks to changing to a
new management system for large-scale
software projects. First, it costs time and
money to train the developers to plan and
track their work and to train the managers
to use a new management system. Then
comes the risk of using these methods on
a real project. While you will see some
early benefits, you will not know for sure
whether this new management system is
truly effective for you until the first proj-
ect is completed and you can analyze the
results.

This brings up a related and even more
difficult problem: On large multi-year
projects, there is not time to run pilots.
You must pick a management strategy and
go with it. However, since almost all large
software-intensive projects are now failing
anyway, the biggest risk is ot changing.
Perhaps the biggest shock for most man-
agers is realizing that they are part of the
problem, and that they have to change
their behavior to get the kind of large-sys-
tem results they want.

These problems are common to all
change efforts. The way to manage these
problems is to examine the experiences of
others and to minimize your exposure by
carefully planning your change effort and
getting help from people who have
already used the methods you plan to
introduce. Of course the alternative is to
hope that things will get better without
any changes. With this choice, however,
your large-systems projects will almost
certainly continue to perform much as
they have in the past.

Question 12: What Has Been

the Experience So Far?
The Software Engineering Institute
(SEI*) has developed a method called the
Team Software Process™ (TSP*™) that fol-
lows the concepts described in this article
[11]. With the TSP, if you properly train
and support your development people and
if you follow the SEI’s TSP introduction
strategy, your teams will be motivated to
do the job propetly. The team members’
personal practices will be defined, meas-
ured, and managed; team performance
will also be defined, measured, and man-
aged; and the project’s status and progress
will be precisely reported every week.
Although this will not guarantee a suc-
cessful project, these practices have
worked for the several dozen projects that
have tried them so fat.

Moreover, there is one caveat. These

March 2005

practices have proven effective for teams
of up to about 100 members, as well as
for teams composed of multiple hard-
ware, systems, and software professionals.
They have even worked for distributed
teams from multiple geographic locations
and organizations. Although these meth-
ods should scale up to very large projects,
the TSP has not yet been tried with proj-
ects of over 100 professionals. I know
from personal experience, however, that
these practices will address many of the
problems faced by the managers of soft-
wate organizations of several thousand
developers.

The other articles in this issue
describe the TSP experiences of several
organizations. They describe how these
practices have worked on various kinds
of projects and how they could help your
organization. ¢

Acknowledgements

Many people have participated in the work
that led to this article, so I cannot thank
them all personally. However, without
their willingness to try new methods and
to take the risks that always accompany
change, this work would not have been
possible. So, to everyone who participated
in the early CMM and CMMI work and to
all of those who have learned and used the
Personal Software Process™ and TSP, you
have my profound gratitude. I have also
had the advice and support of several
people in writing this article. My special
thanks go to Dan Burton, Noopur Davis,
Bill Peterson, Marsha Pomeroy-Huff, and
Walker Royce.

References

1. Humphrey, Watts S. Managing the
Software Process. Reading, MA:
Addison-Wesley, 1989.

2. Chrissis, Mary Beth, Mike Konrad, and
Sandy Shrum. CMMI — Guidelines for
Process Integration and Process
Improvement. Reading, MA: Addison
Wesley, 2003.

3. The Standish Group International,
Inc. Extreme Chaos. The Standish
Group International, Inc., 2001.

4. Royce, Walker. Software Project
Management, A Unified Framework.
Reading, MA: Addison-Wesley, 1998.

5. Humpbhrey, Watts S. “Reflections on a
Software Life.” In the Beginning
Recollections of Software Pioneets.
Robert L. Glass, Ed. Los Alamitos,
CA: IEEE Computer Society Press,
1998.

6. Raymond, Eric S. The Cathedral and
the Bazaar. Cambridge, MA: O’Reilly
Publishers, 1999.

March 2005

7. Deming, W. Edwards. The New
Economics for Industry, Government,
Education. 2nd ed. The MIT Press,
Cambridge, MA, 2000.

8. Juran, J.M., and Frank M. Gryna.
Juran’s Quality Control Handbook,
Fourth Edition. New York: McGraw-
Hill Book Company, 1988.

9. Taylor, Frederick Winslow. The
Principles of Scientific Management.
New York: Harper and Row,
Publishers, Inc., 1911.

10. Frederick P. Brooks. The Mythical
Man-Month. Reading, MA: Addison
Wesley, 1995.

11. Humphrey, Watts S. Winning With
Software: An FExecutive Strategy.

Reading, MA: Addison-Wesley, 2002.

Note

1. The Software Engineering Institute
offers courses and transition services
to help organizations introduce the
TSP. Additional information is avail-
able at <tsp@sei.cmu.edu> or at
<www.sei.cmu.edu/tsp>.

About the Author

Watts S. Humphrey
joined the Software En-
gineering Institute (SEI*™)
of Carnegie Mellon
University — after his
retitement from IBM in
1986. He established the SEI’s Process
Program and led development of the
Software Capability Maturity Model®,
the Personal Software Process™, and the
Team Software Process™. During his 27
years with IBM, he managed all IBM’s
commercial software development and
was president of Technical
Development. He holds graduate
degrees in physics and business adminis-
an SEI Fellow, an
Association for Computing Machinery
member, an Institute of Electrical and
Electronics Engineers Fellow, and a past
member of the Malcolm Baldrige
National Quality Award Board of
Examiners. He has published several
books and articles and holds five
patents.

vice

tration. He is

Carnegie Mellon University
4500 Fifth AVE

Pittsburgh, PA 15213-2612

Phone: (941) 924-4169

Fax: (941) 925-1573

E-mail: watts@sei.cmu.edu

Why Big Software Projects Fail: The 12 Key Questions

Get Your Free Subscription
Fill out and send us this form.

OO-ALC/MASE
6022 FIR AVE
BLDG 1238
HiLL AFB, UT 84056-5820
FAX: (801) 777-8069 DSN: 777-8069
PHONE: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af. mil

NAME:

RANK/ GRADE:

PosITION/TITLE:

ORGANIZATION:

ADDRESS:

BAse/CITY:

STATE: ZiP:

PHONE:()

Fax:()

E-MAIL:

CHeck Box(es) To REQUEST BAck ISSUES:
OcT2003 []| INFORMATION SHARING
Nov2003 [] DEev. oF REAL-TIME SW
DEc2003 [] MANAGEMENT Basics
JAN2004 []| INFO FROM SR. LEADERSHIP
MAR2004 [] SW PROCESS IMPROVEMENT
APR2004 [] AcquisITION

MAY2004 [] TecH.: PROTECTING AMER.
JUN2004 [| AssESSMENT AND CERT.
JuLy2004 []| Top 5 PRrOJECTS
Auc2004 [| SysTEMs APPROACH
SEPT2004 [| SoFTwARE EDGE
OcT2004 PROJECT MANAGEMENT
Nov2004 SOFTWARE TOOLBOX
Dec2004 REUSE

JAN2005 OPEN SOURCE SW
FEB2005 [| RISk MANAGEMENT

To REQUEST BACK ISSUES ON ToPICS NOT
LISTED ABOVE, PLEASE CONTACT KAREN

RASMUSSEN AT <STSC.CUSTOMERSERVICE@
HILL.AF.MIL>.

]
]
]
]

www.stsc.hillafmil 29

